A Note on the Second Order of Accuracy Stable Difference Schemes for the Nonlocal Boundary Value Hyperbolic Problem

نویسندگان

  • Allaberen Ashyralyev
  • Ozgur Yildirim
  • Sergey Piskarev
چکیده

and Applied Analysis 3

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

NUMERICAL SOLUTIONS OF SECOND ORDER BOUNDARY VALUE PROBLEM BY USING HYPERBOLIC UNIFORM B-SPLINES OF ORDER 4

In this paper, using the hyperbolic uniform spline of order 4 we develop the classes of methods for the numerical solution of second order boundary value problems (2VBP) with Dirichlet, Neumann and Cauchy types boundary conditions. The second derivativeis approximated by the three-point central difference scheme. The approximate results, obtained by the proposed method, confirm theconvergence o...

متن کامل

A note on the well-posedness of the nonlocal boundary value problem for elliptic difference equations

The nonlocal boundary value problem for elliptic difference equations in an arbitrary Banach space is considered. The well-posedness of this problem is investigated. The stability, almost coercive stability and coercive stability estimates for the solutions of difference schemes of the second order of accuracy for the approximate solutions of the nonlocal boundary value problem for elliptic equ...

متن کامل

Recent Developments on Operator-Difference Schemes for Solving Nonlocal BVPs for the Wave Equation

The second-order one-dimensional linear hyperbolic equation with time and space variable coefficients and nonlocal boundary conditions is solved by using stable operator-difference schemes. Two new second-order difference schemes recently appeared in the literature are compared numerically with each other and with the rather old first-order difference scheme all to solve abstract Cauchy problem...

متن کامل

On Bitsadze-Samarskii type nonlocal boundary value problems for elliptic differential and difference equations: Well-posedness

Keywords: Elliptic equations Nonlocal boundary value problems Difference schemes Stability a b s t r a c t The well-posedness of the Bitsadze–Samarskii type nonlocal boundary value problem in Hölder spaces with a weight is established. The coercivity inequalities for the solution of the nonlocal boundary value problem for elliptic equations are obtained. The stable second order of accuracy diff...

متن کامل

Numerical studies of non-local hyperbolic partial differential equations using collocation methods

The non-local hyperbolic partial differential equations have many applications in sciences and engineering. A collocation finite element approach based on exponential cubic B-spline and quintic B-spline are presented for the numerical solution of the wave equation subject to nonlocal boundary condition. Von Neumann stability analysis is used to analyze the proposed methods. The efficiency, accu...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014